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Abstract 

We use the Reggeon field theory rules for inclu- 

sive reactions to study those processes in the triple- 

Regge region. We first show that at asymptotic energies 

the dominant Reggeon graphs have a single Pomeron con- 

nected to external fast particles. We construct the 

sum of these dominant graphs by obtaining the infrared 

forms of the Pomeron propagator and triple-Pomeron vertex. 

This is done by an expanded set of renormalization group 

equations which allow one to determine the separate 

dependencies on all momenta and energies. As a by-product 
da we obtain the momentum transfer dependence of dt in 2 + 2 

processes. The inclusive cross section is discussed in 

detail as to its dependence on momentum transfer and miss- 

ing mass, and we verify that there is no violation of s- 

channel unitarity when Pomerons interact among themselves. 

We also estimate the energy at which our asymptotic forms 

start to become valid. 
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1. Introduction 

In a companion paper1 we have given rules for calculating 

the effects of multi-Pomeron cuts on inclusive processes in the 

triple Regge limit. Eiere we shall use those rules, together with 

the renormalization group, to calculate the inclusive cross sec- 

tion in the triple Regge limit. As a by-product of the calculation 

we obtain the diffraction peak in 2 + 2 amplitudes. 

In Ref. 1 we used the hybrid diagram technique of Gribov2 

to obtain the "Reggeon calculus" rules in the triple-Regge limit. 

As in the case of 2 + 2 processes 3,4 , it is t-channel unitarity 

which requires the cuts to be determined by these rules. (This 

point is made directly by Cardy, Sugar and White5, who derive 

the "Reggeon calculus" in the triple-Regge limit using t-channel 

unitarity alone.) s-channel unitarity has not been used at all, 

so one must check to see whether it is or can be satisfied. One 

of the most sensitive checks is the requirement that the cross 

section for events in the triple-Regge region not exceed the total 

cross section. This requirement is not met by a simple Pomeron 

pole with a(O) = 1, and cl'(O) finite. 6 What we require, then is 

that the effects of the cuts restore s-channel unitarity in this 

restricted form. The cuts are strong, and we shall find that 

unitarity is indeed restored. 

In Section II we use the renormalization group to prove 

that the dominant contribution to the inclusive cross section is 

due to Reggeon diagrams in which a single Pomeron is attached to 
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the external fast particles. As a consequence, the inclusive 

cross section factorizes at sufficiently high energy. A similar 

result has been found for 2 +- 2 amplitudes. 7 In both cases, the 

effect follows from the manner in which the product of a number of 

Pomeron field operators at a point is renormalized. As the number 

of Pomerons coming together increases, the dimension of the pro- 

duct changes, introducing a factor which suppresses diagrams with 

multiple emission of Pomerons by external particles. 

In Section III we begin the study of the dominant contri- 

bution. Here we encounter a problem which is connected with the 

large number of independent variables for an inclusive cross section. 

If we copy the treatment of 2 -+ 2 

law, Eq. (29). However, a single 

less interesting as the number of 

7 amplitudes , we obtain a scaling 

scaling law becomes less and 

variables increases. For example, 

the scaling law for 2 -t 2 amplitudes is enough to determine the 

energy dependence of ototal elastic’ but the scaling law for inclu- 

sive reactions in the triple-Regge region is insufficient to deter- 

mine the contribution of such events to the total cross section. 

In Section III we therefore apply great effort to the calculation 

of the scaling function which appears in the scaling law. A simple 

technique for calculating scaling functions was introduced in 

Reference 7, and we first show why it is not really satisfactory. 

The trouble with this technique is that it is not uniformly valid 

in the neithborhood of J = 1 and t = 0. We develop new formulas 

in Section III which overcome this defect. The presentation in 
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Section III is for the Pomeron propagator, which is one element we 

need for the dominant contribution to the inclusive cross section. 

The calculation is lengthy, but it results in real improvements. 

We can now give detailed angular distributions in both 2 + 2 and 

inclusive cross sections. The scaling law seems to suggest that 

the propagator has a fixed cut at J = 1, but our new formulas show 

that there are only the moving Regge-Mandelstam cuts. Our formulas 

also have some conceptual interest in that they show what can be 

learned from the renormalization group by studying the dependence 

of Green's functions on the most general normalization point. 

In Section IV we complete the construction of the dominant 

contribution by calculating the energy non-conserving triple- 

Pomeron vertex. Here again, the scaling function is obtained. 

In Sections II to IV we calculate to lowest order in the e-expansion, 

where E = 4-D, and D = 2 is the number of transverse dimensions in 

a high-energy collision. From experience with the scaling expon- 

ents, we expect the lowest term in the e-expansion to give the 

qualitative predictions of Reggeon field theory at D = 2, and we 

expect the quantitative predictions to be correct to within a fac- 

tor of perhaps 3. 8 

In Section V we evaluate the inclusive cross section in 

the triple-Regge limit and exhibit our results in various forms. 

We also verify that the integrated inclusive cross section grows 

no more rapidly with energy than the total cross section. 

Section VI is devoted to conclusions and a summary of what 

we have accomplished. We estimate the energies at which our 
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asymptotic formulas should hold, and find they probably are not 

applicable at presently accessible energies. Nevertheless, the 

formulas we derive have considerable utility. We are able to check 

s-channel unitarity, as discussed above. The distributions we 

calculate have all the qualitative features seen in the data. For 

example, in 2 + 2 processes there is a shrinking exponential dif- 

fraction-peak which dominates the second diffraction maximum by 

six orders of magnitude. Since we know cuts are strong, it is not 

obvious until the calculation is done that the interacting Pomeron 

will lead to a forward Regge pole-like distribution of this sort. 

Another noteworthy feature of our results is that the inclusive 

differential cross section is non-zero at t = 0. Therefore, if one 

insists on fitting inclusive data with a simple Pomeron pole in 

the triple-Regge region, we do not expect the phenomenological 

triple-Pomeron vertex to vanish. (We emphasize that the triple- 

Pomeron vertex does vanish at ti = 0, Ji = 1. When cuts are pre- 

sent, the inclusive cross section does not vanish at t = 0 because 

Ji # 1 contributes to the Sommerfeld-Watson transform.) Our re- 

sults agree with other treatments of the inclusive cross section 

in Reggeon field theory where they overlap. 10 

II. The Renormalization Group and the Inclusive 

Amplitude in the Triple-Regge Limit. 

The inclusive cross section for the process pl + p2 -f pi + X 

is given by the formula 
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The six point amplitude T6 has the kinematic identifications shown 

in Fig. 1. The triple-Regge limit is 

If &ked. 
(2) 

In this limit T6 has several contributions, of which one has a 

discontinuity in sl. 1 This contribution is given by the Sommerfeld- 

Watson integral ctiao 

J;-JL-~ 

The signature factors are 

For Pomerons all signatures are positive, -ri = 1. The inclusive 
cross section is therefore 
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As in Ref. 1, we shall replace the angular momentum and 

momentum variables by energies E = 1-J and two-dimensional space- 

like momenta G, G2 = -t. We also replace 5 
JZJ3 * by /5l/2 = 1. 

In terms of these variables, 

ctiab 

The rules for calculating the partial wave amplitude F are given 

in Ref. 1. They are stated as Reggeon perturbation rules: 

1.1 Draw all topologically distinct Pomeron digraphs 

(graphs with arrows on Pomeron propagators) in which energy El 

enters and energies E2 and E3 exit. Only triple Pomeron vertices 

are included, but any number of Pomerons may couple at a point to 

external particles. An example is shown in Fig. 2. 

2.1 For each diagram, identify the "notable" vertices. 

A notable vertex has one incoming and two outgoing lines. In addi- 

tion , notable vertices have a topological property which can be 

stated in terms of paths following arrows and leaving the vertex. 

The property is that no path starting with one line leaving a 

notable vertex ever meets a path starting with the other line leav- 

ing the notable vertex. Notable vertices are identified on the 
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Reggeon diagram in Fig. 2. 

3.1 At each vertex put ro/(2r) (D+l) /2 . 

4.1 For a coupling to external particles in which s 

Pomerons come together put (i) s-1 N o,s/ (27r) 
(D+l) (s-1) /2. 

5.) For each Pomeron momentum c and energy E use the 

propagator 

(7) 

6 ..I For each elementary two-Pomeron loop put a factor l/2. 

7.1 Choose one of the notable vertices at which energy will 

not be conserved. A diagram having k notable vertices makes k con- 

tributions in which energy non-conservation occurs at a different 

notable vertex. (For some diagrams, the contributions with differ- 

ent notable vertices chosen as energy non-conserving will be topo- 

logically identical. Even in this case, each contribution must 

be retained. See Section V of Ref. 1 for an example.) 

8.1 Conserve momentum at vertices and energy at non- 

notable vertices. Energy is not conserved at the energy non- 

conserving vertex chosen in step 7. At other notable vertices 

insert a factor 

9.) Integrate dDk dE over remaining internal momenta and 

energies. 

10.) Multiply by i(2T) (D+l) /2 for overall normalization. 

In these rules, D is the number of transverse dimensions. Physi- 
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tally, D = 2. No intercept renormalization is required to main- 

tain CL(O) = 1 within the c-expansion. 

We now want to study the infrared behavior of particular 

contributions I 
'1,'2,'3 to the partial wave amplitude F. I, 

1"2"3 is the sum of all Reggeon diagrams with s1 Pomerons connected to 

the particles where El enters the diagram and s (S 1 Pomerons con- 2 3 
netted to the particles where E2(E3) leaves the diagram. In order 
to begin, we introduce the renormalized contribution I 

This is calculated in the same way as I 
R,sl#S2'S3' 

slfs2fs31 but with the 

elements in perturbation theory replaced as follows: 

i 
Propagators: 

i z;' 
E-d&y2+S - E-&&p+~& - 

Vertices: P 0 -3 CL 

External couplings: N 

It follows that 

We define renormalized couplings and slope by 
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Then we have 

This gives the invariance of the contribution I under renormaliza- 

tion. 

The renormalization constants are chosen by placing nor- 

malization conditions on the renormalized proper vertices intro- 

duced in Ref. 7. The proper vertices are one-Reggeon irreducible 

Green's functions for m incoming and n outgoing Reggeons, with 

external propagators amputated. Renormalized and unrenormalized 

vertices are related in a manner implied by perturbation theory 

rules 

(We remind the reader that proper vertices contain only energy con- 

serving vertices.) Therefore, by placing appropriate normalization 

conditions on the renormalized vertices, we can fix the Z's. The 

conditions we choose are those of Ref. 7. 



(13a) 

(13b) 

(13c) 

(14a) 

(14b) 

(14c) 

We do not have to introduce a separate renormalization constant 

for energy non-conserving triple-Regge vertices. If we did, the 
normalization con'dition would be like Eq. (14c), but I? (2,1) would 

- (2,l) be replaced by r I where the twiddle indicates the presence of 

one energy non-conserving vertex in each perturbation diagram for 
f (2,l) , and a 6 + at other notable vertices in ?(2'1). However, 

when external energy is conserved, as it is in Eq. (14c). pru = , 
-f (2,1) I and the new charge renormalization constant equals Zl. 1 

The renormalization constants Zs+3 are fixed by placing 

normalization conditions on renormalized proper couplings to ex- 

ternal particles. These are one-Reggeon irreducible amplitudes 
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fortwo incoming particles and s outgoing Reggeons, with external 

Reggeon propagators amputated. In calculating Zs+3 we take No s 
I 

to be the only nonzero bare coupling. Renormalized and unrenor- 

malized coupling functions are related by 

The normalization conditions and renormalization constant are 

“As* 3 - ~&,tLJ 
\‘voj~l JLyL &+ -%gv 

\J-11 

l 

& 
I  f  

Since A depends linearly on No s, Zs+3 
B 

has no dependence on this I 
parameter. 11 

A renormalization group equation can be derived for 

IR,s lfs2"3 
by noting that the right side of Eq. (9) has no depen- 

dence on EN. By applying the chain rule we find 

In writing this we have replaced r by the dimensionless coupling 

constant 

(19) 

The coefficients are 



In these derivatives, the bare parameters r. and U; are held fixed. 

We can use the dimensional arguments advanced in Ref. 7 to derive 

the representation 

1 R,4, AZ, AT3 = N', ubz N'3 ($-"-'j2 (+t+A*a3-q) 

(21) 

From this it follows that 

Combining this with Eq. (181, we obtain a scaling equation 

The solution of Eq. (23) is 
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(24) 
where c and a' satisfy the ordinary differential equations 

$3 = -p cpct,,, y(u) =.$Q#> 

&z '/t ) 

Git 
= c/(t) - ~(Z&!q(t), ' G?tq =d/, 

(25) 

In Reggeon field theory , this equation is useful when B(g) 
dB has a zero with - > 0. 
dg Let us suppose gl is such a 

ing the standard analysis, we find a scaling law for 

behavior of 17: 

zero. Follow- 

the infrared 

Here E is a linear combination of the Ei, and 

Q 

(26) 

(27) 
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Eq. (26) can be restated 

From Eqs. (6) and (28) we obtain a scaling law for the inclusive 

cross section which holds for large M2/mo2 and s/M*. 

This shows the shrinkage of the inclusive diffraction pattern, and 

that the contribution I with the lowest index Q dominates at high 

energy. Note that further work will be required to determine the 

shape of the diffraction pattern. 

We will compute Q in the E expansion. When D = 4, g, = 0. 

For E = 4 - 

and we will 

to order sg 

I 

D small, there will still be a zero of 6 with gl small, 

work to lowest order in E.. This means we calculate $ 
0 3 and E g , and the other renormalization group functions 

3 7 to order cog-. Some of the functions have been calculated before' 

(30) 
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The anomalous dimensions associated with the couplings at a point 

to external particles are calculated to order cog2 using the s(s-1) 

diagrams of Fig. 3. The expression is 

We thus find, to order E, 

(31) 

(32) 

We see from this that the leading contribution at high 

energy comes from the contribution with S = s = s 12 3 = 1, which is 
illustrated in Fig. 4. The leading contribution factorizes, as it 

does in the four particle amplitude and total cross section. 7 

In Ref. 7, the four particle amplitude was analyzed in terms 

of Reggeon contributions I n,m' in which n Reggeons are emitted by 

one pair of particles, and m Reggeons are collected by the other 

pair. The analysis of In m is analogous to what we have done here. I 
However, in Ref. 7, y, was erroneously omitted. When it is included, 
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one obtains for the asymptotic four particle amplitude 

This equation corrects Eq. (112) of Ref. 7. None of the conclu- 

sions of that paper is affected. 

III. The Pomeron Propagator 

One element in the dominant contribution is the complete 

Pomeron propagator. To calculate it we must determine the momentum 

and energy dependence explicitly. The techniques used in Section 

II and Ref. 7 must be altered to accomplish this. Let us begin 

by showing precisely how those techniques are inadequate. 

In Ref. 7, by using the arguments of Section II, a scaling 

law was deduced for the infrared behavior of the renormalized in- 

verse propagator 

Since g = gl on the left, this scaling law holds for all g2 and 

E l2 . Our task is to calculate the scaling function 9, 1. Since I 
2 

g1 = O(E) we can determine the left side as a power series in E 

by using perturbation theory. On the right we expand 
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We have expressed the g1 dependence of $ 1 I 1 as an explicit depen- 

dence on E in Eq. (35). Comparing powers of E, we find the first 

two terms in the expansion of $I~~. 7 

co) 
;+, , = -I -p 1 +J” = ) -I] . (36) 

So far no problem is visible, but now let's rewrite Eq. (34) 

We can expand T, 1 
I in a power series in E like Eq. (35), with the 

result 

(38) 

Now suppose we set E = 0 in Eq. (37). Then p + 00 and 
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Comparing this with Eq. (34), we find that $1 1 must have the I 
asymptotic behavior 

(40) 

When this is expanded as a power series in s, the first two terms 

resemble Eq. (36), but the expansion in powers of E obviously 

should not be truncated. As things now stand, Eq. (35) is useful 

for Ip[ << el'c, while Eq. (38) is useful for 1~1 >> e-l'c. What 

is needed is an expression which agrees with Eqs. (36) and (38) in 

these limits and interpolates between them. We turn to that task. 

Our plan is to improve upon Section II in two ways. In 

Eqs. (13a,b) we normalize at a general point so we can obtain the 

implications of the renormalization group for a general change of 

normalization point. We also use the renormalization constants as 

the objects we study. Knowing Z2 and Z3, we determine the propaga- 

tor through Eqs. (14). Since Z(g = 0) = 1, we avoid the undeter- 

mined boundary value on the right side of Eq. (24). The boundary 

value is equivalent to the scaling function in Eq. (341, so we 

learn what we want. The improved scaling function is an infinite 

power series in E, and it provides the interpolation between the 

small and large p regions. 

Our new normalization conditions are 

(41a) 
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(41b) 

r w 
R I = 

E, = X2= Z&= -E$ 
r (&pn)ia / . 

I? i =4 
The renormalization constants are given by 

(41c) 

(424 

and Z 1 still determined by Eq. (14~). 
r*= c 

Renormalized and unrenor- 
malized parameters are still related as in Eq. 

(10). We introduce 
the bare dimensionless coupling go: 

(43) 

We also define renormalization group functions 



g = r’r,&f. (44) 

Note that the renormalization constants can depend only on dimension- 

less parameters; we choose these as the renormalized parameters 

and g. By the chain rule we have for Z3 

These equations can be solved for the partial derivatives 

(45) 

(46b) 



where 

are effective 6 and y functions for the generalized normalization 

we use. We can now integrate Eq. (46), using the boundary condi- 

tion Z3(g = 0) = 1: 

(48) 

Similar calculations 

stants. 

produce the rest of the renormalization con-' 

where 

It is well to pause here and reflect on these equations. 

Suppose we begin a calculation with perturbation theory, which gives 

the Z's as power series in go. From these series we obtain the re- 

normalization group functions of Eq. (44) and then recompute the 
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Z's in Eqs. (48) - (50). No approximations have been made, so for 

the exact Z's the original series will be equivalent to Eqs. (48) - 

(50) l The only difference will be that Eqs. (48) - (50) give the 

Z's in terms of g rather than go. However, Eqs. (48) - (50) are 

reformulations which will lead to different expressions from the 

renormalization constants when approximations are made. The 

approximation we shall make is the usual one of truncating the per- 

turbation theory expressions for the renormalization group functions. 

In this case, Eqs. (48) - (50) are much more useful than the orig- 

inal (now finite) power series. The new Z's are infinite power 

series which are singular at the value of g for which F vanishes. 

This singularity gives us the infrared behavior we want. The pro- 

gression from the finite power series to Eqs. (48) - (50) therefore 

goes from a less powerful to a more powerful use of the information 

available in perturbation theory. 

We continue by rewriting the relation between renormalized 

and bare parameters 

(52a) 

This pair of equations has an inverse, which we write formally 

(52b) 

(53) 
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Using 5 and n , we express Eqs. (42) in terms of bare parameters 

90 
and x 

0 

L 
s’ R = 

(54) 

We examine the infrared behavior of these derivatives by letting 

EN + 0, with r. and e. fixed, and x0 varying in a manner to be 
specified later. In the infrared limit go + ~0, and we need the 

behaviors of 5 and n as their first argument tends to infinity. 

We begin with Eq. (52a). As go + cQ, we see that either g tends to 
infinity, or Z vanishes. We will study the possibility that Z 

vanishes and later will see that this is the relevant case. Eq. (50 
tells us that Z vanishes when g approaches a zero of v(g,x). We 

make this quantitative by assuming that B[g,x) has a linear zero 

at g = gl(x) l 

Then for g near gl, 
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(56) 

where Z i = Z, Z2 or Z3, and 

The suffix II 11 1 means that gl(x) is substituted for g wherever g 

appears. For g near gl, 

(58) 

As long as c is positive, we can invert Eq. (52a) to find 

0,x,) - 
% 

--rao 
0 (59) 

Eq. (59) is not yet a total inversion because n appears on 

the right side. We must also consider Eq. (52b). For g near g 
1' 

(60) 

Substituting x + n, g + <:in Eq:- (-52b) we-find n is -determined from 

70 = ?&q, y$-j4* 
0 

(61) 

We rewrite Eqs. (59) and (61) in a form which specifies 5 and n 
asE +O: N 
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(62a) 

(62b) 

We now have the infrared behaviors of the derivatives of the in- 

verse unrenormalized propagators, Eqs. (54): 
J i p h') 

I s--E&J 

;L 
z SC 

with T-I given implicitly by Eq. (62a) in terms of the scaling vari- 

able ~~~~/(E~)~+sc2'~~. As EN + 0, this variable must vary in 

such a way that B(g,rl) continues to have a zero at gl(n). A suf- 

ficient condition is that the scaling variable, and hence n, remains 

fixed as EN += 0. 

The inverse unrenormalized propagator is determined by inte- 

grating Eqs. (54) from E' = 0 to E' = E at fixed n: 

(64) 

The infrared asymptotic form is 
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(65) 

+2 n is given implicitly by Eq. (62a), with k;\r = g2, EN = -E. 

It is important to note that the constants c, c2 and c3 of 

Eq. (57) are independent of x (or ?-I). This can be quickly shown 

for c3 by substituting Z3 from Eq. (56) into Eq. (46b). Since the 
right side has no logarithmic singularity at g = g,(x), dc.3 (xl 

dx = 0. 
Analogous proofs hold for c and c2. 

In a sense, Eqs. (62a) and (65) are the desired asymptotic 

expressions. However, we lose all information about the x depen- 

dence of the propagator when these equations are evaluated in the 

first order s-expansion. This dependence is retained if we work 

out some additional equations for the derivatives of gl, ??, and y 

with respect to x. The derivative of gl can be found by substitu- 

ting Z3 from Eq. (56) into Eq. (46b) and matching the residues of 

both sides at the pole at g = gl. 

(66) 

z, z2 and z, are determined by evaluating 
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(67) 

by both Eq. (56) and Eq. (46) and its analogues for Z and Z 
2' This 

yields the formulas 

To lowest order in the E-expansion 

In this approximation, 

(68) 

(69) 

(70) 
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Eqs. (48) through (50) yield 

From these equations we obtain 

cc 

(71) 

(72) 

The small value for gl when E is small is what justifies our use 

of perturbation theory for the renormalization group functions. 

The functions a(~,&) approach 1 as E + 0. They also satisfy Eqs. 
(66) - (68). 



The solutions:ofthese equations are 

(73) 

(74) 

All we know about the S(E) is the boundary value a(O) = 1. These 
functions will be determined in the higher order E expansion. 

Here we set g(s). = 1. In the higher E expansion, additional 

factors will appear on the right side of Eqs. (741, with exponents 

of O(sn), n > 2. 

Our expression for the inverse unrenormalized propagator is 



(75) 

A number of observations can be made about this result. If we 
assume that the scaling variable is very small [large], and expand 

in a power series in E, we recover Eq. (36) [Eq. (3811, aside from 
a renormalization. Therefore our result "exponentiates" those 

power series and holds uniformly for both small and large values 

of the scaling variable. It is easy to show that there are no 

fixed cuts in the energy or momentum plane, despite the fractional 

powers of energy in Eq. (75). The moving cut is the two Pomeron 

cut. It can be shown that the pole and cut trajectories are related 

by the familiar equation 

(76) 

At higher orders in the s-expansion multi-Pomeron cuts appear. 

Finally by using the explicit expression for gl in Eq. (741, one 

can show that Eq. (75) holds whenever g2, E and E are small, even 
when the scaling variable tends to infinity. The result follows 
from the fact that gl = O(s4) on the physical sheet of the angular 
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+2 momentum plane when k and E are small. 

The angular distribution of the diffraction peak in 2 + 2 

processes can now be worked out because the dominant contribution 

involves only the full Pomeron propagator, according to Eq. (33). 

where 

(78) 

(79) 

(80) 

In Eq. (77) we have included only the imaginary part of the 

amplitude. The real part of the amplitude is subordinate to the 

second term in Eq. (33) at high energy, so it would be inconsistent 

to retain the real part and ignore subdominant imaginary contribu- 

tions. Fl(x) is normalized soFi(O) = 1. It can be put in a form 

suitable for computation by transforming from w to v = 1 + l/26 as 

the variable of integration. This substitution finally eliminates 

the implicit function of Eq. (79). The contour integral over v 

can be shrunk down to a line integral. 



We exhibit F12(x) in 

. 
(81) 

Fig. 5. At sufficiently high energy, where 
7 

shrinkage is great, F ,"(x) determines the diffraction peak. It is 

encouraging that it has a forward peak which is six orders of mag- 

nitude above the second maximum, much as is seen in the data. 

IV. The Energy Non-Conserving Triple-Pomeron Vertex. 

The energy non-conserving vertex is the second function we 

need to assemble the leading contribution of Fig. 4. The calcula- 
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tion is a straightforward generalization of what has been done in 

Section III, so we will simply list some key equations along the 

way. 

The normalization we use is that of Eq. (411, except we now 

set EN = E and kN 2 k -+2 
1' = , where -El is the energy entering the 

non-conserving vertex, and +Ttk are the momenta flowing out. The 

renormalization constants are given by Eqs. (42a), (42b), (14c), 

and there is a new constant related to the energy non-conserving 

vertex. 

z -1 (a) (D+Q’k 
e = ( cJ’ 

zO 
+-2 = Zl when E2 = E3 = El/2, k = 0. Renormalization group func- 

tions associated with Z. must be defined. 

(83) 

The treatment of 2, Z2 and Z3 is unchanged from Section III. 

zO 
depends upon the renormalized parameters g and x plus the two 

new ratios 

The differential equations satisfied by Z. are 

(84) 

(85) 
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where 

(86) 

Thus 

The unrenormalized energy non-conserving vertex is given by 

The infrared limit is studied as in Section III, with the result 

-CA 

) 
(89a) 

(8%) 

One can show that co is independent of both x and A.. 
1 In the E- 

expansion we will also need the differential equations for the 

parameter dependence of To. 
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(90) 

When calculating in the lowest order E-expansion, the only 

new feature is the evaluation of the "energy conserving-diagrams" 

of Fig. 6. The new renormalization group functions are 

(91) 

where 

(92) 

Thus, to this order, 
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- P P -($&J t 
co= - $+0&j z 3 * = [ (~s’j’&(~,l;). 

Equations for ao(x,Ai) follow from Eqs. (90) 

(93) 

(94) 

The solution of these equations is 

Again we choose So(E) = 1. Our final infrared asymptotic form is 

In this equation , x is replaced by II in A and A'. 



-38- 

V. The Inclusive Cross Section in the Triple-Regge Region. 

where 

(98) 

and in A and A' we set x = n 
1' The triple Sommerfeld-Watson 

integral cannot be ecaluated explicitly for general t, s/M2 and 
M2/mo2 because the integral over A and A' links El, E 2 and E in 3 
a complicated way. However, the key limits can be studied. Let us 
recall the kinematic fact that if rapidity y, is required for a 

Pomeron to appear, then the triple-Regge region is characterized by 

The ratio . o 
Rn s/M2 

can be either small or large. In 

both these limits Eq. (97) can be evaluated. 
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We begin by studying the region Rn M2/mo2 >> Rn S/M2, which 

is the dangerous kinematic limit for s-channel unitarity. When 

the contour integral in Eq. (97) is converted to a multiple line 

integral, The El integration is dominated by values of E 
1 in the 

range /El] 2 1/Rn(M2/mo2). The integrals over E2 and E are domin- 

ated by values lE21, 
3l 

IE31 Q max [l/Ln(s/M2), (-aAt/K)l+i/241. The 
first term holds near t = 

-(E2+E3)Rn(s/M2) 
0 and stems from the exponential factor 

e ; the second term holds when ItI is larger and the 

Pomeron poles and cuts have moved away from E = 0. For any t, 1~~1 

is negligible compared with 1~~1, IE3j or IElnlj in the integration 

over A and A'. The reason ~~~~~~ is not negligible is that it has 

a finite limit as E 1 vanishes. 

The last two approximate equalities are exact at E = 0. However, 
since the integral over A and A' already has a coefficient of order 

s, we are free to make the replacement Elnl -+ E2n2 in A and E n -+ 
11 

E3'13 in A'. The three energy integrals are now uncoupled. 

where 



(102) 

F2 (x) is normalized so that F2(0) = 1, and it is an entire function 

of x. We treat F, by the transformation used for F,. The result- 

ing integral is 

(103) 

where 



(104) 

F22 (x) is displayed in Fig. 7. It is qualitatively similar to Fl, 

but has a more prominent secondary maximum. In both these functions, 
the oscillations are due partly to the fact that the Pomeron is a 

pair of complex poles, and partly to interference between the poles 

and two Pomeron cuts. In Eq. (101) the factor (Rn M2/mo2)e'12 is 

what one expects for the high energy behavior of the Pomeron-particle 

total cross section. 

It can be shown that F22(x) = e-2x for small x. This be- 
havior is evident from Fig. 7, and it allows us to integrate over 

momentum transfer. In doing this we assume that s/M2 is so large 

that the t dependence of B,'(t) can be ignored. (It would be 
easy to include the t dependence if it were exponential.) 
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This can be further integrated over M2. Let us suppose Eq. (105) 

is accurate for Rn M2 2 p RnS. This gives the lower limit on M2, 

and the upper limit is chosen so that at high energy the integration 

over t extends all the way to x = 0. At large M2, 

x Whir, = 
(106) 

I'f we choose ML < 6s, with 6 small, we integrate arbitrarily close 

to x = 0 and can use Eq. (105). This restriction also keeps s/P12 

large enough to Reggeize, and avoids multiple counting of exclusive 

events in the inclusive cross section. The integrated inclusive 

cross section is 

(107) 

By unitarity, this cannot exceed the total cross section, and we 

see that it rises with the same power of Rn s/mo2 as the total 

cross section. Since the large M2 end of the spectrum is where a 
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simple Pomeron pole violates unitarity, the interacting Pomeron 

corrects that inconsistency. The factor l/~ in Eq. (107) does not 

indicate an infinite result at E = 0. There is another term, also 

proportional to l/~, which has been dropped in Eq. (107). This term 
is subordinate for & >o, but not at E = 0. The factor l/~ is 

therefore associated with a Stokes' phenomenon in the asymptotic 

behavior at E = 0. 

The other limit we study is the triple Regge region just 

above the resonances, Rn M2/m 2 
0 

c-c Rn s/M2. We now have two sub- 

ca.ses according to the value of t. 
-a;t 

The first case is that of large 

t, K (Rn M2/mo2)l + e'24 >> 1. In this case we can still ignore 

Ed. relative to E2 and E3 because the Pomeron poles and cuts have 

moved sufficiently far away from E2 3 = 0. Therefore, Eq. (101) I 
continues to apply. 

-cl't 
The small t region, ; (an M2)l + E/24 << 1 leads to 

different approximations in the treatment of the triple-Pomeron 

vertex. We now drop E2, E3, and Elnl relative to El in A and A'. 

As a consequence, the inclusive diffraction pattern bears a close 

resemblence to the diffraction pattern in 2 + 2 processes. This 

is expected in the resonance region, and it continues to hold into 

the low M2 part of the triple-Regge region. 
-c$t 

We find for Rn M2/mo2 << 

Rm s/M2# K (Rn M2)l + E/24 << 1, 

(108) 
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As before, we can integrate over t, and over Rn ML from y 0 to 
p Rn s. This contribution falls like (Rn s) -~/8 at high energy, so 

the proof that s-channel unitarity is not violated is complete. 

Note also that when M2 is fixed, the inclusive cross section has 

the same high energy behavior as the 2 + 2 amplitude in Eq. (76). 

This is expected for resonances, and it carries over into the low 

M2 part of the triple-Reqge region. 

In Fig. 8 we show the Rn ML distribution at t = 0. For pure 

Pomeron poles with a(O) = 1, this distribution is flat. In this 

interacting Pomeron theory it rises at the small M' (resonance) 

and large M2 (Feynman x = 0) ends of the triple-Regge region. The 

singularities at M2 = 0 andM2 = s lie outside the triple Regge 

region. 

VI. Summary and Conclusions 

We have calculated the effects of Pomeron cuts on inclusive 

cross sections in the triple-Regge limit using Reggeon field theory 

and the e-expansion. In the leading contribution only one Pomeron 

couples to each fast particle (Fig. 5), so the main task was to cal- 

culate the complete Pomeron propagator and the "energy non-conserving" 

triple Pomeron vertex. The special version of Reggeon field theory 

rules for the "energy non-conserving vertex" was derived in Ref. 1. 

We calculated the complete propagator and the new vertex 

using the renormalization group. We first used this technique to 

obtain scaling laws for the inclusive amplitude. We then saw that 
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a complete description of the M2 and t dependencies of the ampli- 

tude would require knowledge of the scaling functions appearing in 

the scaling laws. In Section III we developed the renormalization 

group machinery which permits a consistent evaluation of the scaling 

functions. We believe this technique may be useful for the calcu- 

lation of multi-particle Green's functions in other applications of 

the renormalization group. 

We first applied this improved technique to the calculation 

of the Pomeron propagator. We discovered that there is no fixed 

cut at j = 1 in the angular momentum plane, even though the scaling 

law for the propagator hints that one is present. We were also able 

to calculate the leading contribution to da/dt for 2 + 2 processes. 

The resulting diffraction peaks shows a gratifying qualitative 

agreement with the data. 

For the inclusive cross section we were able to obtain ex- 

plicit formulas when Rn M2/mo2 is near either the low or high limits 

of the triple Regge region. The high range is the dangerous one 

which leads to a violation of unitarity for a pure Pomeron pole. 

In our theory we find that the high range of Rn M2/mo2 leads to an 

integrated inclusive cross section which grows at the same rate as 

atot Q (Rn s/m0 2) l/6 . We thus confirm the finding 10 that Reggeon 

field theory removes the violation of unitarity. We also found 

that at large Rn M2/mo2 and fixed t and s/M2, the inclusive cross 

section grows like (Rn M2/mo ) 2 l/6 , that is, like the total cross 

section. In this region the t distribution (Fig. 7) differs sub- 

stantially from da/dt for exclusive processes (Fig. 5), and has a 
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more prominent secondary maximum. 

When M2 is small (just above the resonance region) , the 

angular distribution is the same as do/dt for exclusive processes, 

provided t is not too large. For fixed t and M2, the inclusive 
2 l/6 cross section grows like (Rn s/M ) , that is, like the total 

cross section. In Fig. 8 we give an interpolation between the low 

and high M2 limits of the triple-Regge region at t = 0. 

This is a good place to emphasize the approximations that 

go into our calculations, and the rather slight contact we expect 

our results to have with current experiments. In the first place, 

we evaluate only the leading behavior in the relevant partial wave 

amplitude at Ji 2 1, t 2 0. This restriction comes about because 

we have calculated with a linear bare Pomeron trajectory and with 

only a structureless bare triple Pomeron interaction. These terms 

are infrared dominant, and give the infrared behavior of almost 

every interacting Pomeron. 9 We do not calculate the next term in 

the expansion about the infrared limit, so we obtain only the lead- 

ing term at high M2/mo2 and s/M2, and at small t. The crucial ques- 

tion, then, is how large M2/mo2 and s/M2 must be, and how small ItI 

must be, in order for the leading term to be adequate. To answer 

this we must rely on reasonable estimates. 

The t dependence will surely be wrong when the angular momen- 

tum of the Pomeron is changed by one unit of angular momentum be- 

cause we have evaluated Pomeron signature factors at J = 1. For 

this reason, a reasonable restriction is ItI 2 0.3. A second reason 

for this restriction is that we have ignored the t dependence of the 
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Regge couplings. Phenomenological fits generally require substan- 

tial t-dependence for ordinary Regge couplings and triple-Regge 

vertices. 

The limit on rapidity can be estimated by determining how 

far from E = 0 we can trust our leading expression for the discon- 

tinuity across the cut in the energy plane in ir (I,11 . For this 
+2 estimate we set k = 0, but now we keep all the corrections to the 

leading infrared behavior. We do this by rewriting our expression 

for Z3 in terms of the unrenormalized coupling and slope 

We can now set D = 2 and integrate Eq. (42a): 
-s 

This agrees with Eq. (75) near E = 0, but deviates strongly at the 

transition energy 3ro 2/(8n)~'o. Therefore we expect our formulas to 

apply for rapidities 

(111) 

When the energy is small compared to the transition energy, one 

should expand the integrand in Eq. (110) in ascending powers of r ; 
0 

l.e., one should use Reggeon calculus perturbation theory. 

It is worth emphasizing the importance of factors like 8n 

in Eq. (111). These make a tremendous difference in the estimate 
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for s, and it is just to get them right that we have used Eq. (110) 

rather than simply evaluating some typical perturbation graphs. 

For example, looking at the lowest order contribution to the 

Pomeron self-energy would lead to y > 16raA/ro2, which is a factor 

of 6 larger than Eq. (111). To be sure, our estimate will change 

in the higher order ~-expansion, but we hope the factor will be 

less than 6. Note that the phase space factor (HIT) D/2 has not been 

expanded in powers of E in this paper. It would be a serious error 

to have done this, for it would have led to an extra factor of 

87~ 'L 25 on the right side of Eq. (111). 

Let us assume Reggeon perturbation theory can be used at 

Fermilab energies. Then for proton-proton scattering we can use 

the simple formulas 

From the data we estimate 13 

(112) 

(113) 

a’ 
0 

we estimate from the slope parameter in proton-proton elastic 
-2 14 scattering as 0.3 (GeV) . Thus we find 

(114) 
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This rapidity corresponds to s Q 150 (GeV)2. It is to be emphasized 

that Eq. (114) is uncertain by a factor of 2 or more and is pro- 

bably low. The triple Pomeron part of the inclusive cross section, 

and therefore r 
0’ 

is uncertain by at least Jz, and there are fur- 

ther corrections connected with the E expansion and fact that we 

have ignored multi-Pomeron couplings, t-dependence of couplings, 

and so forth. These parameters all set rapidity scales which must 

increase the bound on y if they exceed 5. It is interesting that 

our estimate is much smaller than the rapidity 9estimated by Amati 

and Jengo. 15 In any case, one can hope to see scaling behavior in 

aT and the 2 + 2 diffraction peak some day, but it is unlikely that 

it will be seen in inclusive processes. 

We have mentioned above that for inclusive processes at pre- 

sent energies one should evaluate perturbation graphs. This may 

seem to be a simplification, but the graphs are not dominated by 

the triple-Pomeron coupling and the single-Pomeron coupling to fast 

particles. The elegant universality of the high energy limit is 

lost, and one must be guided by trial and error in the construction 

of an adequate bare Pomeron and its interactions. The task is to 

restrict the number of parameters at finite energy in a believable 

way. 

The final approximation we have made is the use of the E- 

expansion. It is more purely technical than the other approxima- 

tions and one might hope to avoid it. 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Kinematics of the six-point amplitude which is related to 

the inclusive cross section. In the inclusive process 

s1 = M2 is the missing mass, s12 = s13 = s is the total 

energy r t2 = t3 = t is the momentum transfer, and tl = 0. 

A Reggeon diagram with two notable vertices at Cl and C2. 

Diagrams which must be evaluated to calculate the anomalous 

dimension of the coupling to external particles. 

The leading asymptotic contribution to the inclusive cross 

section. 

The function F12(x) which d t e ermines the diffraction 

pattern in 2 -+ 2 processes at asymptotic energies. In the 

graph we have set E = 2. 

Perturbation 

lowest order 

conserving. 

The function 

in inclusive 

& = 2. 

diagrams contributing pE and 1-lk in the 
i 

~-expansion. The vertex C is energy non- 

F22(x) which determines the diffraction pattern 

processes where Rn 5 >> An--E M2 >> 1. Here 
0 
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Fig. 8 The inclusive cross section in the triple Regge region 

at t = 0. The distribution for a pure Pomeron pole is 

a horizontal line. The middle of the triple Regge region 

is an interpolation between Eqs. (101) and (108). 
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